=PFL  Influence of triaxiality (damage in polymers)

Transition from plane stress PS (thin specimen or close to the surface) to plane strain PE
(thick specimen or on symmetry plane).

The smaller plastic zone size in plane strain results from the high triaxiality of the stress
state, which restricts plastic yielding (Tr &P' =0).

n= 1ro assuming v = 1/3:
Oym

=8/3 in PE
=2/3 in PS

Epaisseur

Figure 4-3. Sketch of the general shape of a Mode | crack tip plastic zone across a thick plate (from
Janssen, Zuidema, Wanhill, Fracture Mechanics, 2nd Edition, CRC Press, London, 2014).
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£PFL  Influence of plastic zone L s Aumin

[=Y
-~

[ | o0 : %
size (metals)
o
50 a
5
i o
Mind the unit of Kl ! g 10
Ksi-inch'/2 5
5 30 |
Crack e '
g -
10
Fracture 0 - ; . i i
transition 0 02 0.4 06 08 | 12

region

Specimen Thickness, in.

Figure 4-8. Variation of measured fracture toughness with specimen thickness for 7075-T6 Aluminium.
(Adapted by Anderson from Barsom and Rolfe, Fracture and Fatigue Control in Structures. 2nd Ed.,
Prentice-Hall, Englewood Cliffs, NJ, 1987).

Figure 4-7. Typical appearance of a fracture surface where initial crack extension under plane strain
conditions is superseded by fracture under plane stress.



=PFL Conditions forvalid K, testing

B FRACTURE OF MATERIALS

When performing laboratory plane strain mode | K. tests on
standard specimensJ the following empirical size requirements
have been adopted to ensure reproducible results for different
elastic-plastic materials:
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The minimum requirements for @ and W —a ensure that the plastic zone is sufficiently
small for fracture to be K-controlled (20 to 50 times the plastic zone size). The requirement
for B is intended to ensure plane strain conditions along the crack front, although it is
often far more stringent than necessary.
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Linear superposition principle
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Figure 2-6. Using the linear superposition principle to deduce that the stress intensity factor
corresponding to a crack loaded by a uniform stress & applied to the crack planes in an otherwise stress-
free solid, which we shall call K,, is the same as the stress intensity factor given by the same stress
applied remotely to the whole of the specimen (case C above). In A, the stress is uniform everywhere.
To obtain this situation when a remote stress G is applied in the presence of a crack, we need to apply
an additional negative stress o to the crack faces (case B). In case B, then, Kz= 0. If we do not apply this
negative stress to the crack faces (case C), then the stress intensity factor will take some finite value K.
corresponding to the crack length. By superposition, case B is equivalent to case C + case D, and hence

Ka=0 =K.+ Kp. By inverting the direction of the stress in case D we see that K, = -Kp. Therefore K. - Kx=0
and K. = K,, QED.
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B FRACTURE OF MATERIALS

Linear superposition principle

Figure 2-7. Crack with forces Fa and Fg applied at distances b and a + b from the tip A of a through-
thickness crack of length 2a in an infinite plate of thickness B.

Now let’s look at another example, starting from Figure 2-7. For this situation, it is possible to
show (you can look up how in A.A. Wells, Br. Weld. J. 12, 1965, 2, If you're interested) that the
stress intensity at crack tip A due to (linear) force Fa acting at a distance x = b from the crack tip
is

a F a+b
K, = = = (2-31)
B(ma)'? Va—b
and that due to force Fg, which acts at a distance x = a + b from the crack tip A, is
. F a—->b
K,=—"12=: (2-32).

Blma)* Va+b

By superposition, then, if the two forces are of equal magnitude, F

,_ . . 2F a
K, =K, +Kp= B2\ 3 b (2-33.

Hence, if we consider a continuous symmetrical distribution of forces along the crack such the
F at any position along the crack is given by Ba(x)dx, we obtain

K=2/2[_2%) . (2-34)
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EPFL The Dugdale strlp yield model

2a + 2p

Plastic zone

FIGURE 2.31

The strip yield model. The plastic zone (a) is modeled by yield magnitude compressive stresses at each crack
tip (b).
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Solving this integral gives

K

Kclcﬁun’:_ 2G¥5\||a+ J |
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FIGURE 2.32
a+p a Crack opening force applied at a distance x from the centerline.
Kosure = =205, |—— cos™ [—] (2.86)
n a+p
The stress intensity from the remote tensile stress, K; = 04/(2+p), must balance with ) 2 1 K 2
osurer Lherefore, n°o n( K I - I
p = = —| — I P _—
. 1 86,2 8\ 0Oys T\ Oys
=08 (2.87)
a+ p 20\{5



=PFL  Fatigue fracture
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= CAK™ with m between 2 and 4.



=PFL  Fracture mechanics
Last class on May 26th:
- CTOD: Crack tip opening displacement
- Recap and Q&As

Third Edition

FRALCTURE
MECHANICS

Fundamentals and Applications

= Fracture mechanics, T.L. Anderson

= Available at EPFL library and
online

* Be sure to be connected to VPN
for accessing online version

* https://www.epfl.ch/campus/library/
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